Coastal management - What are the options? Our thoughts about the suitability of different types of coastal management have changed over time. The full spectrum of options is listed in *Table 1*, together with some examples. **Hard engineering** (e.g. seawalls) with its high construction and maintenance costs is only used where there is no choice but to protect valuable buildings or business. So-called **soft engineering** tries to cope with coastal processes using techniques like beach nourishment. It has lower costs and often some environmental benefits. Very few strategies are truly **sustainable** or future-proof, and currently tend to be small scale or only tried where land values are low. Table 1 The spectrum of Coastal Management options. | Strategy | Purpose or description | Strengths | Weaknesses | Yorkshire coast examples | |-------------------------------------|--|--|---|--| | HARD
ENGINEERING | This approach involves CONTROL. Traditionally (Victorian) used to overcome natural processes | | | | | 1. Cliff-foot
strategies | To protect the beach from sea erosion | | | | | Sea walls | Massive, made of rocks or concrete, used to absorb waves. Some types can act as Baffles | Traditional solution to protect
valuable resources, high-risk
property or densely populated
areas | Very costly, foundations easily
undermined of built on beaches, or
where LSD operates | Holiday resorts, e.g. Hornsea and
Withernsea | | Revetments | Massive, made of concrete, used to reflect rather than resist waves | As above though relatively cheaper | Costly and do not cope well with very strong waves | Easington gas terminal | | Gabions | Wire cages holding smaller rocks | Cheaper version of above | Relatively lightweight and small scale solution | Skipsea | | Groynes | Rock or wooden types, hold
beach material threatened by
LSD erosion | Low capital costs and repaired relatively easily | Need regular maintenance.
Cause scour downdrift and have
wider impacts | Hornsea, Withernsea and (famously) at Mappleton | | Offshore bars
(artificial reefs) | Reduce power of waves offshore | Mimic natural bars and reefs.
Can be built of waste material | Possible ecological impacts and may not work at large scale | Only used as small scale pilot study so far | | Rip-rap
(rock armour) | Very large rocks in front of sea
walls or cliffs to absorb waves | Effective and prevents large-
scale undermining | No longer a relatively cheap option. May move in severe weather. | Withernsea and Easington | | 2. Cliff-face
strategies | To reduce damage from sub-aerial erosion | | | | | Cliff drainage | Removal of water prevents landslides and slumping | Cost effective | Drained cliffs can dry out and lead to collapse (rockfalls) | Small scale project at Easington | | Cliff regrading | Lower the angle of cliffs to stabilise ground | Works on clay or loose rock where little else will | Retreat of cliff line uses up valuable land | Mappleton | | SOFT
ENGINEERING | This approach involves ACCOMMODATION, working with natural processes | | | | | Beach
nourishment | Sand pumped or transported to replace losses by LSD | Appears 'natural looking' process | Expensive and may soon erode. Possible ecological effects | Hornsea and Mappleton | | 'Do nothing' | Land no longer worth defending | Saves expenditure on defence | May allow problems to get worse. | Neck of Spurn head | | 'Red-lining' or
zone management | Withdrawal or prevention of planning permission for new development | Cost effective in long term | Unpopular with residents and business. Politically tough | | | SUSTAINABLE
MANAGEMENT | This approach involves ADJUSTMENT, working to secure the future of a coastline | | | | | 'Managed retreat' | Incentives given through grants/buyouts to encourage re-
location and 'set-back' schemes | Cost effective (as it saves
construction costs) in longer
term. May help reduce tides in
estuary environments | Difficult to argue politically if residents involved | Suggested in 1994 for Hornsea
but not implemented. Ideal for
estuary around Sunk Island. | | Coastal resilience
(ecosystems) | Partial flooding allows salt
marsh and wetlands to adjust to
sea.water. Allowing erosion in
some places helps sand dunes
develop in others | Very cost effective and
environmentally valuable.
Allows conservation of bird life
especially | Loss of agriculturally productive land. Does this work on a large scale? | Plans to flood Sunk Island and
plant in sand dunes south of
Hornsea | | Shoreline management plans | Detailed consultation getting local groups to work together to find best solution for each littoral sub-cell | Solutions tailored to specific places and particular needs of local community | May be seen as delaying tactic by those who want action now | Applied to coast further north in the Scarborough and Whitby areas |